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A number of problems of finding the shape of a thin curvilinear rod (the support element of an artificial lens) of constant cross- 
section and specified length with its ends at specified points and under specified loading conditions with maximum compliance 
for characteristic types of end restraint and loading are considered. It is shown that the boundary-value problem arising for the 
non-linear Euler equation may have a set (possibly denumerable) of solutions, one of which gives the absolute maximum 
compliance, and the others the local maxima. The problem is analysed in detail, analytical solutions are obtained and the 
corresponding shapes are constructed in a number of important cases. 0 2001 Elsevier Science Ltd. All rights reserved. 

In a number of problems related to structures containing thin curvilinear rods as, support elements 
(SEs) the need arises to find the shape of the SE that has maximum compliance. This is required, in 
particular, in problems of optimizing the structures for an intracapsular artificial lens [l]. Below, the 
problem of maximizing the compliance is examined as a variational problem on the bending of an SE 
as a curvilinear rod with constant diameter and cross-section moment of inertia. In problems examined 
earlier [2], concerning rods of minimum compliance, the required curve is uniquely defined. A detailed 
proof of the adopted formulation and a discussion of other approaches to describe the mechanics of 
the “capsule-artificial lens” system were given in earlier publications [l, 3-5].$ 

1. FORMULATIONS OF THE PROBLEM. 
FORMULAE FOR THE COMPLIANCE 

For linear systems, the relation between generalized forces and the corresponding generalized dis- 
placements is linear: u1 = II,Qj, where 11 I& 11 is the matrix of the compliances [6, p. 4571, or the “matrix 
of the external compliance of the system” [7, p. 581, or the “matrix of the coefficients of influence” [S, 
p. 1591. Below, in all cases we will examine only one generalized displacement as a result of the action 
of one generalized force, and therefore we will use the above relation in the form u = IIQ or II = u/Q, 
specifying all the more precisely what a compliance II, a generalized force Q and a generalized dis- 
placement u will be involved in each specific case. Then, the requirement of maximum compliance can 
be written in general form as 

II = u/Q + max (1.1) 

where u is the characteristic displacements of points of the SE, and Q represents the loads applied to 
the SE or the loads that arise reactively from the external structure. 

From the viewpoint of a qualitative analysis and of obtaining effective solutions, it is more convenient 
to deal with point loads (see Fig. 1; for an open SE its lower part is shown by the continuous 
curve, and for a closed SE it is shown by the dashed curve; ES stands for external structure. However, 
physically, the contact area of the SE with the external structure has finite dimensions (Fig. 2) and Q 
in (1.1) is the pressure q in the contact area (it is convenient to assume this to be constant). With a 
non-zero contact area, its shape and dimensions in the optimization formulation, up to Section 6, will 
be assumed to be specified and (in accordance with the ophthalmological subtext: an SE resting on the 
circular capsule of an artificial lens) to have the form of the arc of a circle. 

tPrik1. Ma?. Mekh. Vol. 64, No. 6, pp. 1046-1056,200O. 
$See also also DASHEVSKII, I. N. and SHKLOVER, V E., Some problems related to the mechanics of an artificial lens. 

Preprint No. 355, Inst Problem Mekh. Akad. Nauk SSSR, Moscow, 1988, DASHEVSKII, 1. N. and SHKLOVER, V E., 
Intracapsular artificial lens and curvilinear rods of maximum compliance. Preprint No. 398, Inst. Problem Mekh. Akad. Nauk 
SSSR Moscow, 1989. 
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Fig. 1 Fig. 2 

If u is the generalized displacement at a point a in any direction under the action of the generalized 
force Q applied at a point b (generally speaking, b f a) or distributed over a finite region, then, for a 
plane rod system under bending, which, in the general case, in statically indeterminate, the formula for 
the compliance using Mohr integrals can be written in rectangular Cartesian coordinates X, y in the 
following form ([18, p. 161; 9, p. 1991, etc.) 

M*.h4&7% hi. = M,b +h,M,,, +...+h,Mlc, (1.2) 

where E is Young’s modulus, J is the moment of inertia, x0 is the abscissa of the end of the SE, y(x) is 
the shape of the SE, Mla is the distribution of the moment due to a unit force factor acting at the point 
a in the direction of displacement, Mu, is the same, but at the point 6 in the direction of application of 
the force, Xi, . . , , A, are the constraint reactions at points cl, c2, . . ., c,,, generated by a unit force factor 
Q, M,, represents the distributions of the moments generated by unit constraint reactions at the point 
SC (for a statically determinate system Xi = 0 and Me = Mlb). The constraint equations expressing the 
absence of displacements at the points cl, c2, , . . c, have the form 

~MlciM.Jl+;;?dr=O, i=I.....n 
0 

(1.3) 

If the directions of the force and displacement and also the points a and b coincide, then, by replacing 
a by b in Eq. (1.2) and multiplying each of equalities (1.3) by Xi and adding them all up, instead of (1.2) 
we obtain 

Closure of the formulation of the optimization problem necessitates specifying the boundary conditions 
(the coordinates of the rod ends) and the condition of a fixed length of the SE 

Y(O) = 0, YhJ I= Y,, ~Jl+y;Thr=l (1.5) 
0 

2. MAXIMIZING THE COMPLIANCE FOR ANGULAR 
DISPLACEMENT FOR AN OPEN SE 

We will first consider the simplest model case. We will introduce a system of coordinates and notation 
as indicated in Fig. 1; here, u will denote the angular displacement of the open SE (the angle through 
which the tangent to the SE turns), for example at point 0 with a point force P acting on the SE at this 
point along the x axis (an examination of the action of a uniformly distributed normal pressure q 
(Fig. 2) is similar to that carried out in the present section). 
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We will use an expression for II in the form of (1.2). In the given case, a = 6, Ml, = 1 and 
M. = A4tb = y(x), which gives the optimization problem in the form 

Em = 7 y(x),j~& + max 
0 

(2.1) 

under conditions (1.5). 
Problem (2.1), (1.5) is an isoperimetric problem of the calculus of variations, mathematically equivalent 

(apart from an unimportant max f) min replacement) to the classical Bernoulli problem on the shape of 
a heavy thread (chain or rope) in a gravitational field with a solution in the form of a catenary [lo, p. 3901. 

According to the theorem of displacement reciprocity ([8, p. 1591, [9, p. 214]), the solution obtained 
is also the solution of the problem of optimizing the compliance for a linear displacement along the 
Ox axis when the moment Ma is applied to the SE at the point 0. 

3. MAXIMIZING THE COMPLIANCE OF AN OPEN SE FOR 
A LINEAR DISPLACEMENT. A POINT FORCE 

The formulation of this section corresponds to Fig. 1, where u denotes the linear displacement of the 
SE at the point 0 along the direction of the force Q = P. Here, in (1.2) MI = Mlb, a = b and the 
functional being optimized acquires the form 

EJll = 7 y* (x)J1+L;idr + max 
0 

(3.1) 

under conditions (1.5). 
Introducing the Lagrangian multiplier l.~ and investigating, for an unconditional extremum, the 

functional 

we obtain Euler’s equation 

Y” 2Y -=- 
I+y’2 y*+cL 

(3.3) 

To clarify certain general features of the solutioni initially we will consider the limit case of a shape 
which deviates slightly from the x axis, formally: y (x) (< 1~~1 and Y’~ (( 1. Here Eq. (3.3) and the last 
condition of (1.5) degenerate to 

Y 
,*_2Y, xo -- 

P J y’*dx = 2(1-x0) 
0 

(3.4) 

Solving Eq. (3.4), taking account of the first two conditions of (1.5), and then using relation (3.1), 
we obtain for the shape and the compliance 

y(i)=Asin(oG). *=$$(l-F) 

The integration constants (the frequency w and the amplitude A) are defined by the formulae 

(3.5) 

(3.6) 

If the dimensionless parameter E = yo(2Jx&-~)) 6 1 (which somewhat reinforces the initial 
assumptions), then, from the second relations of (3.6) we obtain that, if the roots w, are not too large, 
such that ORE 4 1, then lsin o,,J + 1. Hence, o, = ITS + w = 7~m, where 101 -G 1, m = 1, 2, . . . 
4 l/(pe), which corresponds to the solution y&) with approximately m half-waves (solutions with 
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m = 0 when E 4 1 are impossible, since then lw, I = IwI <( 1 and the ratio sin wm/wm would be of the 
order of unity and not of the order E <( 1; solutions with m < 0, however, can be rejected, since, in view 
of the fact that o, = nm, they only change the sign ofy,,&) in (3.5), which is already taken into account 
by the + signs in the second relation of (3.6) forA). For the amplitude, ignoring the term sin 20/(20) 
in the second relation of (3.6), we obtain& = +2[x,(1 - x,,)]“*(~m). The expressions for the optimum 
shape and compliance in this case can be written explicitly. 

Y,W = + 
@&5sinnm x n 

m= 
2x&-Xe) 

-, xm 
x0 n2m2EJ 

In view of the presence of the integer-valued parameter m, the solution of the problem, generally 
speaking, is multivalued, and here to each permissible m there corresponds a solution with m half-waves. 

The equality y. - 0 implies that E = 0, and the explicit formulae obtained for w,, A,, y,(x) and II, 
become accurate according to (3.6) and (3.5) within the framework of the initial assumptions, while 
the number of solutions becomes denumerable (m = 1,2, . . .). 

Returning to Euler’s equation (3.3), in the general case of large y(x), we obtain its first integral in 
the form 

(3.7) 

where, to be specific, it is assumed that the integration constant c > 0. 
The application of the Legendre condition (checking the sign of the second derivative with respect 

toy’) to (3.2) indicates that the type of the extremum is determined by the sign ofy2 + p,. From (3.7) 
it follows that y2 + p does not vanish in the segment x E [0, x0], i.e. it retains a constant sign. If 
y2 + k > 0, the solution gives a minimum of functional (3.2) provided that y(0) = 0; in this case it is 
monotonic and is uniquely defined [2]. The expression y2 + p < 0, which changes the situation 
fundamentally, corresponds to the case of the maximum. 

Separating the variables x and y, we rewrite relation (3.7) in the form 

& =*d” 
J(-y=-p-c)(-y= -p+c) c 

Sincey2 + k < 0, we have p, < 0. From (3.8) it follows that -CL - c > 0 and lyl G \ -p, - c. 
Therefore, fromy, F and c it is possible to change to 0, k and w 

(3.8) 

y=J--CL-_Csin0, O(O)=O, &= - 
d 

-u-c 

-u+c’ 
O<k<l, U&/F 

C 
(3.9) 

We adopt the condition O(0) = 0 taking into account the first condition of (1.5) and assume that 
x0 > 0 (the case where x0 = 0 is degenerate and, after investigating the general behaviour pattern of 
the solutions, is naturally obtained as the limit as x0 -+ 0). 

Changing in Eq. (3.8) to the variables 0, k and o and integrating it under the condition O(0) = 0, 
we obtain 0 = +am(wlxo, k), where am(u, k) is the Jacobi elliptic function, and the “plus” and “minus” 
signs correspond to two different solutions. 

Returning, using (3.9), from 0 toy, we have 

y(x) = f 2kxo2 s”(“~,k)=~~~s”(~x.~~) 
o(l-k ) 

Z%ll” 

sn(u, k) t sin(am(u, k)), u = j 
O&Z. 

(3.10) 

Thus, the solution is a function resembling a sinusoid with a frequency-dependent amplitude. 
Substituting expression (3.10) into (3.1) and using certain properties of the Jacobi elliptic functions 

[ll, pp. 791,792 and 47-511, after some reduction we obtain an expression for the compliance in the form 
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_snocno,jno , I=’ (3.11) 
X0 

To determine the constants k and w, from the second condition of (1.5) we obtain 

am(o, k) = (-I)“’ arcsin *yow(’ -k2) + lun 
2kx, 

(3.12) 

where m is an integer equal to the rounded-off number of half-waves which fit in the segment [0,x0]. 
From the relations c > 0, -l_~ > 0 andxo > 0, it follows from (3.9) that o > 0 and am(w, k) > 0, and 
from (3.12) we establish that m 2 0, and here if *y,-, G 0, then m B 1. Changing from (3.12) to the 
relation F(fi, k) = I;&, k), wherefr andf 2 are respectively the right- and left-hand sides of (3.12), while 
F((w, k) is the normal Legendre elliptic integral of the first kind [12, p. 7531, and taking account of the 
fact that F[am(w, k), k] = co. we obtain 

+(-l)m arcsin yoW~~k2).k + 2mK(k) = w 
0 I 

where K(k) is the complete normal Legendre elliptic integral of the first kind [12, p. 757 and thereafter]. 
Then, from the final condition of (1.Q taking into account relations (3.7) and (3.10) and the properties 

of the Jacobi elliptic functions, after some reduction we obtain 

E(am(o, k), k) = 
(f+x,)o(l -k*) 

2x0 

where E(cp, k) is the normal Legendre elliptic integral of the second kind [12, p. 7531. 
Substituting (3.12) into the last relation, we arrive at 

f(-I)” arcsin YOW -k*) , k + ZmE(k) = 
(f+x,)o(l-k*) 

2hO 2x0 

(3.14) 

where E(k) = E(7r/2, k) is the complete normal Legendre elliptic integral of the second kind [12, p. 757 
and thereafter]. 

Relations (3.13) and (3.14) give two equations for determining the two unknown integration constants 
k and w. In view of the presence in (3.13) and (3.14) of an undetermined integral-valued parameter m, 
the solution of maximization problem (3.2) under conditions (1.5), generally speaking, is multivalued 
(several extremals and the corresponding local maxima). To find the global maximum, it is necessary 
to find the compliance for each of the local maxima (i. e. for each permissible m) and select the greatest 
of them. 

Whenyo = 0, relations (3.13) and (3.14) become 

w = 2mK(k) (3.15) 

E(k) / K(k) = (1 - k*)( 1 + i/x,-,)/2 (3.16) 

Equation (3.16) has a unique solution k(l/xo) [12, p. 7571 and thereafter], according to which relation 
(3.15) determines a denumerable set of frequencies o, for all m = 1,2, . . . 

Substituting expression (3.15) into (3.10) and (3.11), and taking account of the fact that in this case 
sno = sn(%zK(k)) = 0, we obtain for the solution and the compliance, respectively 

(3.17) Y,w=f kro 
m(l- k*)K(k) 

sn[r?mK(k)~,k]. x E [O,X~] 

&A- l 

3EIm* (1 -k*)*K(k)* 
(I+k2#I+i)_1 =“I 

2 1 nl* 
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The global maximum of the compliance corresponds to m = 1. 
The solutions obtained whenya = 0 (for the plus sign in (3.17)) are shown in Fig. 3 by the solid lines. 

Whenm = 1, the solution consists of a single half-wave, and in the entire segment x E [0,x0] it is convex 
(for the plus sign) and within it does not vanish. When y. + 0 and m S- 1, (3.17) is an approximate 
solution if a certain neighbourhood of the end (x0, yo) is ignored. 

Ifyo = 0, then m is exactly equal to the number of half-waves, but ifyo f 0, then m is the result of 
rounding-off this number: slightly less than, or more than, m half-waves fit in the segment, and the 
difference does not exceed a quarter-wave (Fig. 3, the dashed lines). 

Investigation of relations (3.10), (3.13) and (3.14), taking into account relations (3.9) and the signs 
of the parameters, leads to the general behaviour pattern of the solutions which can be presented 
graphically if x0, 1 > x0 is given, if y. is “freed” and if the evolution of the solution as a function of w is 
followed. The value w = 0 corresponds to a solution which is a segment joining the origin of coordinates 
to the point (x0, +(12 - xi)“*). As w increases, this segment begins to bend, retaining its length 1 and 
sliding, with its right-hand end, along the vertical x = x0. When w reaches a value of 2K(k), where k is 
the root of Eq. (3.16), Eq. (3.15) is satisfied for the first time, which corresponds to the case where, in 
the segment [0,x0], just one half-wave of the solution is located. Further increase in w for a fixed length 
1 leads to the formation of an increasing number of folds/half-waves and is accompanied by a reduction 
in the amplitude of the solution and attenuating oscillations of its right-hand end about the point (xoyo 
= 0) according to the law 

y. = +2kxosn(o, k)l[o( 1 - k2)] 

Here, every time w passes through 2mK(k), the quantity yo passes through zero (determined by the 
zeros of the function sn(w, k)) and the SE shape passes a configuration with an integer number m of 
half-waves. 
In the general case, for given y. f 0, we can obtain a bilateral estimate for m (see the references) 

[ 1 - sign (*y0)1/2 6 m c I(1 + x~)/lyal +I]%? 

and a more accurate upper estimate 

m C (I2 -.&~(2IYoI)+I 

However, the greater the value of m, the lower the required compliance. From this it follows that 
the global maximum, i.e. the solution of problem (1.1) is obtained when m = 0 or m = 1. 

It is interesting to compare the compliance II,(r) of the optimum shape (for simplicity, withy0 = 0) 
with the compliance of model shapes of the form A-and Il with the same 1 and x0. The expressions for 
II,, and II, and asymptotically for II1 as 14 1 and I+ 33 have the following respective forms 

Y, m=l__ 
/ -. / \ 

/ \ 
/ \ 

, \ 
/ \ 

I m=l \ 

Fig. 3 
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Hence, unlike the case when i + l(1 +x), when i + tQ the compliances II,, II, and IIn are equivalent 
and proportional to i’ (see Fig. 4, where the lines 1,2 and 3 correspond to In(E.UlJ, In(RJlI,,,) and 
In(EJIM). 

4. A DISTRIBUTED LOAD 

We will consider the same problem for the case of a uniform load distribution (Fig. 2) so that Q = q 
in (1.1). As in Section 1, we will assume the contact part of the SE to be the arc of a circle of specified 
radius R and angular dimension cps, and only the contact part of the SE y(x), x E cr,k,xs], wherever R[l 
- cos ((pd2)] is the abscissa of the boundary of the contact area, is to be determined. 

By symmetry, the overall force acting on the SE from the capsule is directed along the Ox axis, and 
the overall moment taken about any point on this axis is equal to zero. It is therefore more convenient 
to optimize the compliance II with respect to the displacement u in the middle of the contact area in 
the direction of the corresponding radius. 

Substitution of the corresponding expressions for Mi, and &fib into relations (1.2) and (1.5) leads to 
the optimization problem 

EJTI = EJll, +2Rsiny (po 7 y2Jgdx + max 
%k 

y(xok) = y,, = Rsin(cpo 12). Y(XO) = YO, i”&%x=l-Rq, 
%k 

where the compliance of the contact part of the SE, &, is a known function of r and cpo. 
Solving this problem in the same way as in Section 3, we obtain for the contact part of the SE 

Fig. 4 
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We will not give the conditions for integration constants k and o and the formula for the compliance, 
again containing the integer-valued parameter m, in view of their complexity (see the references). When 
y. = y& (the line joining the ends of the non-contact part of the SE is parallel to the Ox axis) for even 
m, or when y. = -y& for odd m, the calculations are simplified somewhat and, for constants k and w, 
give the system of equations 

O=2m- xo K(k), 
xO - xok 

In this case, in the segment x E [x&,x& an integer even (or odd) number of half-waves fits for the 
corresponding part of the solutions and, like the results in Section 3, wheny, = 0, we have W, = llzq 
and k,,, = kl. However, here the number m is limited by the inequality 

Iyo, I=lyo Fly,, I=2kx,4~~,(14*)1 

The reason is that the solution fluctuates as before about the x axis and not about the line y. = yak. 
Since, as m increases the amplitude of the solution decreases and the solution is increasingly closely 
pressed towards the x axis, starting from a certain m, it is impossible to satisfy the conditions on the 
edges with specified final y& = (yo(. The required compliance is calculated by the formula II, = &,k 
+ &/m2, where Dnk is the compliance of the non-contact part of the SE. 

Note that the solution of the problem of maximizing the compliance can be obtained in explicit form, 
generally speaking, only for a displacement direction coinciding with the direction of the overall external 
force acting on the SE. In the opposite case, the corresponding Euler equation cannot be integrated 
in explicit form (this is possible only in the limit where the length of the SE is close to the length of 
the segment joining is ends). 

5. MAXIMIZING THE COMPLIANCE OF A SYMMETRICAL 
CLOSED SE (FIG. 5) 

For convenience, the force applied to the SE will be denoted by 2P; then Il = ul(2P). 
Selecting the upper half of the SE as the main system (it accounts for half of the applied force, i.e., 

a force P), replacing the bottom half with two reactions -with a force PoY and a moment MO, which are 
proportional to the force P with unknown coefficients A, and X2: Pay = X,P, MO = h2P (by symmetry, 
there is no corresponding component Pox along the 0, axis, and using formula (1.4), we obtain the 
problem of optimizing the functional 

2EJn=~(y-h,x-h2)2Jl+y;ihx-,max 
0 

MO 
x 

Fig. 5 

(5-l) 
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under conditions (1.Q and also the conditions for there to be no displacement along the Oy axis and 
no rotation 

Introducing conditions (5.2), into the functional (5.1) using Lagrange multipliers, it can be shown 
that the requirement that the derivatives of the required extremal with respect to Xi and A2 should vanish 
means that these Lagrange multipliers are equal to zero. Therefore, by introducing the former multiplier 
t.~, corresponding to the third condition of (1.5) we obtain the problem of searching for an unconditional 
extremum of the functional 

under conditions (1.5) and (5.2). 
Replacement of the variables by means of an orthogonal transformation 

, Y, =Y-h-h* x - x+&Y 
I 

d- 1 +A: II--- 1+ A: 
(W) + blcr XC>? Xlc = 0) 

enables us to reduce the integral being maximized to a form similar to (3.2) and to obtain the solution 
of the corresponding optimization problem in the form (Fig. 6) 

y,(x,)=f 

x; = Xlc + 

The conditions for determining the constants k, w, A, and X2, and also the formulae for the compliance, 
are omitted in view of their complexity (see the references). The lower part of the SE is symmetrical 
with the upper part about the Ox axis. 

As above, the complete integrals of Euler’s equation can be obtained for a SE with hinged ends, and 
also for a number of other model structures of a closed SE. 

6. THE REQUIREMENTS OF SMOOTHNESS AND INSCRIBABILITY OF 
THE REQUIRED SHAPES IN THE SPECIFIED REGION 

An attempt to use directly the optimum shapes obtained in this investigation in artificial lens structures 
encounters a number of problems. The first is the non-smoothness of these shapes at the point where 

Fig. 6 
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they meet the capsule of the artificial lens: generally speaking, the solutions for the SE yield shapes which 
either enter the capsule at the point 0 (for an open SE, this is its free end, and for a closed SE its middle) 
or (Section 4) which have a break on the boundary of the contact area of the SE with the capsule. 

It seems that, for small 1 - x0, solutions in the class of smooth functions in the given sense do not 
generally exist. However, in artificial lens models that are actually used, to obtain adequate compliance, 
the length of the SE, 1, should be (and is in fact selected to be) fairly long (1- (x0 + R)). This makes 
it necessary to satisfy another natural additional condition for the SE of the artificial lens: the requirement 
of ‘inscribability” of the required SE shape in a certain region (assuming the displacements are small, 
this is roughly in the annular region between the circular capsule and circular artificial lens). At the 
same time, the somewhat unexpected possibility is opened up of correcting this defect of non-smoothness 
just in the range of long lengths 1, which is of greatest practical importance. 

The pattern of evolution of the solution as 1 increases will qualitatively be as follows. For small 
1 - x0, the corresponding extremal fits within the specified region and the solution does not reach its 
external boundary, with the exception of the point 0. As 1 increases, the amplitude of the solution 
increases up to the instant of contact of the extremal of the capsule circle, after which, when 1 increases 
further from the point of contact, a region of overlap is formed and continues to grow until, at a certain 
1 - (x0 + R), the entire “near-capsule” part of the solution lies on the capsule. From this instant, all 
the breaks and “non-smoothnesses” of the solution also disappear. 

Obtaining a smooth solution of this kind can be interpreted as the result of taking into account the 
requirement of inscribability for fairly long 1, which leads to the problem of an extremum with constraints 
on the shapes required in the form of inequalities. As is well known [12, pp. 352 and 3531, when solving 
such problems in the class of smooth functions, the extremum can be reached only on curves consisting 
of arcs of extremals (satisfying Euler’s equation) and parts of the boundary of the permissible region 
(“the capsule plus the surface of the artificial crystalline lens”). In this case, at the points of transition 
of extremals on the boundary, they have a common tangent and the position of these points is determined 
from the smoothness conditions. 

However, it is possible to regard obtaining such a solution as the result of correcting the non- 
smoothness defects of the initial solution, for which an additional condition needs to be introduced 
into the initial formulation: the requirement that the rod (SE) should be tangent to the capsule at points 
where they meet. However, the simple addition of such a condition will generally result in the problem 
not having a solution as a boundary-value problem for an ordinary second-order differential equation 
(Euler’s equation) with three boundary conditions (the first two conditions fix the position of the ends 
of the rod). To obtain a correct formulation, it is necessary, at the same time as introducing the additional 
condition, to introduce an additional free parameter, the value of which will be determined automatically 
when solving the problem. For example, the length of the SE, 1, can be adopted as such a parameter. 
By “freeing” the length 1, and increasing it, we obtain precisely the same pattern of evolution of the 
solution as above. 
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